The Elastic Properties of Objects by Determining Young's Modulus for the Characterization of Metal Raw Materials Using a Speed Sensor Encoder and a Load Cell Sensor

Authors

  • Umi Pratiwi Department of Physics, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia
  • Wahyu Tri Cahyanto Department of Physics, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia https://orcid.org/0000-0003-4148-0744
  • Sunardi Department of Physics, Faculty of Mathematics and Natural Sciences, Jenderal Soedirman University, Purwokerto, Indonesia https://orcid.org/0009-0008-1783-1405

DOI:

https://doi.org/10.58905/saga.v1i2.60

Keywords:

young’s modulus, stress, strain, sensor

Abstract

The unique characteristic of a metal material can be determined from the value of Young's modulus which represents the ability of the material to deform in response to an external force given to the material. This study aims to determine the value of Young's modulus for three metal wires (copper, nickel, and steel) and the percentage of measurement errors using a self-designed Young's modulus kit equipped with a load cell sensor and speed sensor encoder. The measurement of Young's modulus was carried out in five experiments without any variation in diameter (the diameter was fixed and the same for all metals), and the results were compared with the reference values. The results showed that the values of Young's modulus for copper, nickel, and steel wires were 11.74 x 1010 N/m2, 21.63 x 1010 N/m2, and 20.84 x 1010 N/m2, respectively. The difference between the measured values and the reference values for Young's modulus for copper, nickel, and steel wires were 6.7%, 3.0%, and 4.18%, respectively. The small differences between the measured values and the reference values indicate that the measurement approach approximates the reference values and can be used to support other measurements involving Young's modulus values of a metal material

References

T. Suseno, “Analisis Dampak Sektor Pertambangan Mineral Logam Terhadap Produk Domestik Bruto,” J. Teknol. Miner. dan Batubara, vol. 15, no. 2, pp. 133–144, 2019.

W. Suprapto, Teknologi Pengecoran Logam. Universitas Brawijaya Press, 2017.

N. H. Sari, Material teknik. Deepublish, 2018.

S. Suyanto, R. Wibowo, and S. Pramono, “Pemanfaatan besi scrap sebagai bahan dasar industri peleburan baja,” Mar. Sci. Technol. J., vol. 1, no. 2, pp. 51–57, 2021.

L. Leonova, - Elvira, and E. Priadi, “HUBUNGAN ANTARA KUAT TEKAN DENGAN MODULUS ELASTISITAS TERHADAP USIA BETON UNTUK BERBAGAI VARIASI KADAR SUPERPLASTICIZER,” Jurnal TEKNIK-SIPIL, vol. 21, no. 1. Tanjungpura University, 2021, doi: 10.26418/jtsft.v21i1.50661.

B. Sulaeman, “Modulus elastisitas berbagai jenis material,” PENA Tek. J. Ilm. Ilmu-ilmu Tek., vol. 3, no. 2, pp. 127–138, 2018.

N. K. Gulo and A. H. Panuluh, “Pengukuran Modulus Young Senar Pancing Dengan Metode Analisis Frekuensi Dawai,” J. Kumparan Fis., vol. 3, no. 3, pp. 209–214, 2020.

F. Sasmita, C. Claudia, G. Wibisono, T. Z. S. Tarigan, H. Judawisastra, and T. A. Priambodo, “PENENTUAN MODULUS ELASTISITAS LOGAM DENGAN METODE ULTRASONIK PULSA GEMA,” Jurnal Teknologi Bahan dan Barang Teknik, vol. 8, no. 1. Jurnal Teknologi Bahan dan Barang Teknik, Balai Besar Bahan dan Barang Teknik, p. 27, 2019, doi: 10.37209/jtbbt.v8i1.115.

W. Wibowo, E. Safitri, and F. N. Septian, “KAJIAN KUAT DESAK DAN MODULUS ELASTISITAS BETON MUTU TINGGI DENGAN BAHAN TAMBAH ACCELERATOR MENGGUNAKAN ANALISIS MIKROSTRUKTUR,” Matriks Teknik Sipil, vol. 7, no. 3. Universitas Sebelas Maret, 2019, doi: 10.20961/mateksi.v7i3.36497.

A. M. Siregar and J. F. Nasution, “Efek Kecepatan Pembebanan Pada Bahan Baja Terhadap Kekuatan Tarik Impak,” Mek. J. Ilm. Tek. Mesin, vol. 4, no. 1, 2018.

Q. Yao et al., “Modeling of acoustic field dependent tensile property for metal materials,” Extrem. Mech. Lett., vol. 60, p. 101980, 2023.

M. Tefa and I. E. Santosa, “Pengukuran Modulus Young dengan Analisis Keadaan Resonansi Batang Aluminium yang Bergetar Menggunakan ImageMeter,” in Prosiding SNFA (Seminar Nasional Fisika dan Aplikasinya), 2017, vol. 2, pp. 346–354.

S. P. Sakti, Pengantar Teknologi Sensor: Prinsip Dasar Sensor Besaran Mekanik. Universitas Brawijaya Press, 2017.

D. P. ISSRIZA, “Rancang Bangun Kit Penentuan Modulus Young Kawat Berbasis Mikrokontroler,” Inov. Fis. Indones., vol. 6, no. 3, 2017.

M. M. Sternheim and J. W. Kane, General physics. 1991.

W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction, vol. 7. John wiley & sons New York, 2007.

M. Rizal, Pengukuran Teknik Dasar dan Aplikasi. Syiah Kuala University Press, 2020.

W. Wahyudi, A. Rahman, and M. Nawawi, “Perbandingan nilai ukur sensor load cell pada alat penyortir buah otomatis terhadap timbangan manual,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 5, no. 2, p. 207, 2017.

D. P. Koesgi and D. Wicaksono, “PENGARUH PEMANASAN AWAL TERHADAP SIFAT MEKANIK SAMBUNGAN SPOT FRICTION STIR WELDING DALAM PEMASANGAN RIVET ALUMUNIUM 2024,” Tek. STTKD J. Tek. Elektron. Engine, vol. 7, no. 1, pp. 140–153, 2021.

W. Li et al., “Temperature-dependent elastic modulus model for metallic bulk materials,” Mech. Mater., vol. 139, p. 103194, 2019.

A. Sjahriza, S. Herlambang, and I. F. Wati, “Modifikasi Karakteristik Kuat Tarik pada Komposit Film Poli (Vinil Pirolidon) dan Karagenan Melalui Pembentukan Komposit Karbon Nano Dot,” al-Kimiya J. Ilmu Kim. dan Terap., vol. 5, no. 2, pp. 52–56, 2018.

Downloads

Published

02-05-2023

Issue

Section

Articles