Analysis of Interrelationships between Weather Parameters in North Jakarta and Central Jakarta Based on Predictions Using LSTM and GRU
DOI:
https://doi.org/10.58905/saga.v2i4.398Keywords:
LSTM, GRU, Weather Prediction, Weather Parameters, Prediction AccuracyAbstract
This study analyzes the interrelationships between weather parameters, including average temperature (Tavg), relative humidity (RH_avg), rainfall (RR), and average wind speed (ff_avg) in North Jakarta and Central Jakarta, and compares the performance of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models in predicting these parameters. Data was collected from Tanjung Priok Maritime Meteorological Station in North Jakarta and Kemayoran Meteorological Station in Central Jakarta from December 2021 to December 2024. The results show that GRU performs better in North Jakarta, with RMSE of 9,02, MSE of 81,28, and MAE of 4,21 at 75 epochs, while LSTM yields RMSE of 10,02, MSE of 100,34, and MAE of 4,62 at 50 epochs. Conversely, LSTM outperforms GRU in Central Jakarta, with RMSE of 8,96, MSE of 80,22, and MAE of 4,65 at 100 epochs, while GRU produces RMSE of 9,53, MSE of 90,78, and MAE of 4,85 at 75 epochs. GRU is more effective in capturing extreme fluctuations, while LSTM excels in predicting interrelationships between parameters. This study provides insights into selecting the appropriate weather prediction model based on the priority of prediction accuracy or the ability to capture extreme fluctuations
References
A. Luthfiarta, A. Febriyanto, H. Lestiawan, and W. Wicaksono, “Analisa Prakiraan Cuaca dengan Parameter Suhu, Kelembaban, Tekanan Udara, dan Kecepatan Angin Menggunakan Regresi Linear Berganda,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 10–17, 2020, doi: 10.33633/joins.v5i1.2760.
A. Mustofa and H. Setiawan, “Perbandingan Metode Deep Learning dengan Model LSTM dan GRU untuk Prediksi Perubahan Iklim,” vol. 5, no. 4, pp. 868–882, 2024, doi: 10.47065/josyc.v5i4.5671.
M. D. A. Carnegie and Chairani, “Perbandingan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU) Untuk Memprediksi Curah Hujan,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1022–1032, 2023, doi: 10.30865/mib.v7i3.6213.
I. W. A. Suranata, “Pengembangan Model Prediksi Curah Hujan di Kota Denpasar Menggunakan Metode LSTM dan GRU,” J. Sist. dan Inform., vol. 18, no. 1, pp. 64–73, 2023, doi: 10.30864/jsi.v18i1.603.
F. Insani, S. Fadilah, Jasril, and S. Sanjaya, “Prediksi cuaca pekanbaru menggunakan fuzzy tsukamoto dan algoritma genetika,” Semin. Nas. Teknol. Informasi, Komun. dan Ind., pp. 255–262, 2020.
R. F. Firdaus and I. V. Paputungan, “Prediksi Curah Hujan di Kota Bandung Menggunakan Metode Long Short Term Memory,” J. Penelit. Inov., vol. 2, no. 3, pp. 453–460, 2022, doi: 10.54082/jupin.99.
H. Freecenta, E. Y. Puspaningrum, and H. Maulana, “Prediksi Curah Hujan Di Kab. Malang Menggunakan LSTM (Long Short Term Memory),” J. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 51–55, 2022, doi: 10.33005/jifosi.v3i1.448.
Y. Hendra, H. Mukhtar, B. Baidarus, and R. Hafsari, “Prediksi Curah hujan di Kota Pekanbaru Menggunakan lSTM (Long Short Term Memory),” J. Softw. Eng. Inf. Syst., vol. 3, no. 2, pp. 74–81, 2023, doi: 10.37859/seis.v3i2.5606.
J. Badriyah, A. Fariza, and T. Harsono, “Prediksi Curah Hujan Menggunakan Long Short Term Memory,” J. Media Inform. Budidarma, vol. 6, no. 3, p. 1297, 2022, doi: 10.30865/mib.v6i3.4008.
K. Z. Purwanti, R. S. P. Putra, and Z. Irayani, “Hubungan parameter cuaca dengan sebaran titik api ( hot spot ) terhadap fenomena kebakaran hutan ( studi kasus kabupaten Sumba Timur ),” vol. 7, pp. 1–6, 2024, doi: 10.20884/1.jtf.2024.7.1.11462.
Y. E. Nugraha, I. Ariawan, and W. A. Arifin, “Weather Forecast From Time Series Data Using Lstm Algorithm,” J. Teknol. Inf. Dan Komun., vol. 14, no. 1, pp. 144–152, 2023, doi: 10.51903/jtikp.v14i1.531.
M. Yusuf, A. Setyanto, and K. Aryasa, “Analisis Prediksi Curah Hujan Bulanan Wilayah Kota Sorong Menggunakan Metode Multiple Regression,” J. Sains Komput. Inform., vol. 6, no. 1, pp. 405–417, 2022.
S. Gunawan, Asrizal, Hufri, L. Dwiridal, I. B. Arifin, and F. Rahmatia, “Effect of air temperature, air humidity, and air pressure on rainfall based on measurement result in Kototabang,” Pillar Phys., vol. 15, no. 2, pp. 96–104, 2022, [Online]. Available: http://dx.doi.org/
A. N. Latifah, M. Sulistiyono, A. Sidauruk, B. Satria, and M. T. Nurcholis, “Prediksi Curah Hujan Menggunakan Algoritma Regresi Linear Berganda,” J. ICT Inf. Commun. Technol., vol. 23, no. 1, pp. 39–44, 2023, [Online]. Available: https://ejournal.ikmi.ac.id/index.php/jict-ikmi
I. U. Siloko and O. O. Uddin, “A statistical study of wind speed and its connectivity with relative humidity and temperature in Ughelli, Delta State, Nigeria,” Sci. World J., vol. 18, no. 3, pp. 404–413, 2023, doi: 10.4314/swj.v18i3.13.
B. D. Saputra, L. Hiryanto, and T. Handhayani, “Prediksi Curah Hujan Di Kabupaten Badung, Bali Menggunakan Metode Long Short-Term Memory,” J. Ilmu Komput. dan Sist. Inf., vol. 11, no. 2, 2023, doi: 10.24912/jiksi.v11i2.26002.
E. Supriyadi, “Prediksi Parameter Cuaca Menggunakan Deep Learning Long-Short Term Memory (LSTM) Weather Parameters Prediction Using Deep Learning Long-Short Term Memory (LSTM),” J. Meteorol. Dan Geofis., vol. 21, no. 21, pp. 56–59, 2019, [Online]. Available: http://bmkgsoft.database.bmkg.go.id.
S. Wang, J. Zhao, C. Shao, C. Dong, and C. Yin, “Truck Traffic Flow Prediction Based on LSTM and GRU Methods with Sampled GPS Data,” IEEE Access, vol. 8, pp. 208158–208169, 2020, doi: 10.1109/ACCESS.2020.3038788.
M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(LSTM) Untuk Prediksi Curah Hujan Kota Malang,” J. Repos., vol. 2, no. 3, pp. 331–338, 2020, doi: 10.22219/repositor.v2i3.470.
D. Jansen, T. Handhayani, and J. Hendryli, “Penerapan Metode Long Short-Term Memory Dalam Memprediksi Data Meteorologi Di Kalimantan Timur,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 8, no. 2, pp. 348–352, 2023, doi: 10.51876/simtek.v8i2.202.
M. Taqiyuddin and T. B. Sasongko, “Prediksi Cuaca Kabupaten Sleman Menggunakan Algoritma Random Forest,” J. Media Inform. Budidarma, vol. 8, no. 3, p. 1683, 2024, doi: 10.30865/mib.v8i3.7897.
T. A. F. Muhammad and M. I. Irawan, “Implementasi Long Short-Term Memory (LSTM) untuk Prediksi Intensitas Curah Hujan (Studi Kasus: Kabupaten Malang),” J. Sains dan Seni ITS, vol. 12, no. 1, 2023, doi: 10.12962/j23373520.v12i1.106892.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Faizal Kurniawan, Agung Triayudi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.