Clustering of Generation X and Generation Y Communities in Cybersecurity Using the K-Means Algorithm (Case Study of Depok City, West Java)

Authors

  • Adhitya Eka Wibowo Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Jakarta, Indonesia
  • Agung Triayudi Fakultas Teknologi Komunikasi dan Informatika, Universitas Nasional, Jakarta, Indonesia

DOI:

https://doi.org/10.58905/saga.v2i3.357

Abstract

This research aims to explore the differences in understanding and awareness of cybersecurity between Generation X and Generation Y in Depok City, West Java. The K-Means algorithm is used to group communities based on characteristics relevant to cybersecurity. The results of the study show that there are significant differences in understanding and behavior related to cybersecurity between the two generations. Generation X tends to be more cautious in using technology and has a better knowledge of cybersecurity risks, while Generation Y is more proficient in using digital devices and applications but pays less attention to security aspects. Factors that affect the level of cybersecurity awareness in both generation groups include knowledge of cyber threats, education, and demographic factors. The findings of this research can help stakeholders in increasing awareness and knowledge about cybersecurity and developing better solutions to protect users from cyber threats

References

Abdullah, M. S., & Ikasari, I. H. (2023). Perkembangan Terbaru Dalam Keamanan Siber, Ancaman Yang Diidentifikasi Dan Upaya Pencegahan. JRIIN : Jurnal Riset Informatika Dan Inovasi, 1(1), 96–98.

Statistik, B. P. (2020). Hasil Sensus Penduduk 2020. Badan Pusat Statistik. https://demakkab.bps.go.id/news/2021/01/21/67/hasil-sensus-penduduk-2020.html

Budi, E., Wira, D., & Infantono, A. (2021). Strategi Penguatan Cyber Security Guna Mewujudkan Keamanan Nasional di Era Society 5.0. Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 3(November), 223–234. https://doi.org/10.54706/senastindo.v3.2021.141

Faran, J., & Triayudi, A. (2024). Penerapan Algoritma K-Means Data Mining untuk Clustering Kinerja Karyawan Koperasi. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(4), 2096–2108. https://doi.org/10.30865/klik.v4i4.1728

Jannah, A. R., Arifianto, D., & Kom, M. (2015). Penerapan Metode Clustering dengan Algoritma K-Means untuk Prediksi Kelulusan Mahasiswa Jurusan Teknik Informatika di Universitas Muhammadiyah Jember. Jurnal Manajemen Sistem Informasi Dan Teknologi, 1(1210651237), 1–10.

Nurzahputra, A., Muslim, M. A., & Khusniati, M. (2017). Penerapan Algoritma K-Means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa. Techno.Com, 16(1), 17–24. https://doi.org/10.33633/tc.v16i1.1284

Tendean, T., & Purba, W. (2020). Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means. Jurnal Sains Dan Teknologi, 1(2), 5–11.

Downloads

Published

18-01-2025

Issue

Section

Articles