Analysis of Student Satisfaction Level on its Influence in Courses Using Fuzzy Logic

Authors

  • alwendi alwendi Fakultas Teknik, Universitas Graha Nusantara Padangsidimpuan, Kota Padang Sidempuan, Indonesia
  • Andi Saputra Mandopa Fakultas Keguruan dan Ilmu Pendidikan, Universitas Graha Nusantara Padangsidimpuan, Kota Padang Sidempuan, Indonesia

DOI:

https://doi.org/10.58905/saluspublica.v1i2.89

Keywords:

Fuzzy Logic, Lecturer Research, Mamdani Method

Abstract

One of the soft computing technologies that has been widely developed is fuzzy logic. One of the research themes that uses fuzzy logic is the assessment system in research. To do this, an application that can be used to calculate and record the results of lecturers in learning. The purpose of this study is to apply fuzzy logic with the Mamdani method for lecturer research activities at the University of  Graha Nusantara Padangsidimpuan. The steps of the research using the Mamdani method: generating input variables taken from Sinta accredited articles, Simlitabmas grant articles, and articles in international and national journals. generate input variables taken from Sinta accredited articles, Simlitamas grant articles, and articles in international and national journals. In higher education, teachers play an important role in producing skilled and qualified graduates. Therefore, it is necessary to measure student satisfaction with the performance of lecturers at the UGN Padangsidimpuan campus. To determine student satisfaction, observations and questionnaires were distributed to respondents. The questionnaire as a tool and data collection method to measure student satisfaction with lecturer performance is the Mamdani fuzzy logic method.

References

E. Gani, H. S. Kolibu, and G. H. Tamuntuan, “Pemanfaatan Logika Fuzzy Untuk Sistem Prediksi Banjir,” Jurnal MIPA, 2016, doi: 10.35799/jm.5.2.2016.12965.

G. K. Ijemaru et al., “Image processing system using matlab-based analytics,” Bulletin of Electrical Engineering and Informatics, 2021, doi: 10.11591/eei.v10i5.3160.

P. cheng Li, G. hua Chen, L. cao Dai, and Z. Li, “Fuzzy logic-based approach for identifying the risk importance of human error,” Safety Science, 2010, doi: 10.1016/j.ssci.2010.03.012.

P. Alkhairi, I. S. Damanik, and A. P. Windarto, “Penerapan Jaringan Saraf Tiruan untuk Mengukur Korelasi Beban Kerja Dosen Terhadap Peningkatan Jumlah Publikasi,” Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019, doi: 10.30645/senaris.v1i0.65.

A. Kaur and A. Kaur, “Comparison of Mamdani-Type and Sugeno-Type Fuzzy Inference Systems for Air Conditioning System,” International Journal of Soft Computing & Engineering, 2012.

L. Keviczky, R. Bars, J. Hetthéssy, and C. Bányász, “Introduction to MATLAB,” Advanced Textbooks in Control and Signal Processing. 2019. doi: 10.1007/978-981-10-8321-1_1.

R. F. Ningrum, R. R. A. Siregar, and D. Rusjdi, “Fuzzy Mamdani logic inference model in the loading of distribution substation transformer SCADA system,” IAES International Journal of Artificial Intelligence, 2021, doi: 10.11591/ijai.v10.i2.pp298-305.

W. Wawan, M. Zuniati, and A. Setiawan, “Optimization of National Rice Production with Fuzzy Logic using Mamdani Method,” Journal of Multidisciplinary Applied Natural Science, 2021, doi: 10.47352/jmans.v1i1.3.

R. Rustum et al., “Sustainability ranking of desalination plants using mamdani fuzzy logic inference systems,” Sustainability (Switzerland), 2020, doi: 10.3390/su12020631.

A. Alwendi and M. Masriadi, “APLIKASI PENGENALAN WAJAH MANUSIA PADA CITRA MENGGUNAKAN METODE FISHERFACE,” Jurnal Digit, 2021, doi: 10.51920/jd.v11i1.174.

A. Alwendi, “Digitalisasi Ukm Dalam Hadapi Era Less Contact Economy Pada Masa Covid-19,” Literasi: Jurnal Pengabdian Masyarakat dan Inovasi, 2021, doi: 10.58466/literasi.v1i2.81.

M. Radja, M. A. Londa, and K. Sara, “Penerapan Metode Logika Fuzzy dalam Evaluasi Kinerja Dosen,” Matrix : Jurnal Manajemen Teknologi dan Informatika, 2020, doi: 10.31940/matrix.v10i2.1841.

A. W. Alwendi and K. Samosir, “PENGEMBANGAN DAN IMPLEMENTASI METODE FUZZY MAMDANI UNTUK PENILAIAN KINERJA PENELITIAN DOSEN,” Jurnal Teknik Informasi dan Komputer (Tekinkom), 2022, doi: 10.37600/tekinkom.v5i2.533.

“Analysis of the Naïve Bayes Method in Classifying Formalized Fish Images Using GLCM Feature Extraction,” Journal of Computer Science, Information Technologi and Telecommunication Engineering, 2020, doi: 10.30596/jcositte.v1i2.5171.

Dr.Eng.Agus Naba, “Belajar Cepat Fuzzy Logic menggunakan matlab,” Buku. 2013.

H. Herpratiwi, M. Maftuh, W. Firdaus, A. Tohir, M. I. Daulay, and R. Rahim, “Implementation and Analysis of Fuzzy Mamdani Logic Algorithm from Digital Platform and Electronic Resource,” TEM Journal, 2022, doi: 10.18421/TEM113-06.

Downloads

Published

08/16/2023

Issue

Section

Articles