Sentiment Analysis on Twitter Social Media Application on Fuel Oil Price Hike Using Naïve Bayes and Decision Tree Algorithms
DOI:
https://doi.org/10.58905/sana.v2i2.271Keywords:
Decision Tree, Fuel Oil, Naive Bayes Classifier, PriceAbstract
The increase in fuel prices has significant impacts on the Indonesian community's economic sector. Most people object to this policy because of its significant effects on daily life. Additionally, Indonesia's economy has not fully recovered from the Covid-19 pandemic, compounded by news of rising oil prices. With news of the increase in fuel prices, most people express sentiment regarding the rise in fuel prices on one of the social media platforms, Twitter. This study aims to differentiate the sentiment provided by the public, whether positive, negative, or neutral, using the Naïve Bayes Classifier and Decision Tree algorithms. The analysis results show that the Naïve Bayes Algorithm model, specifically Bernoulli Naïve Bayes, achieves the highest accuracy of 65.60%, with a precision of 68%, recall of 60.30%, and f1-score of 59.33%.
References
Gusti, I., Indrawan, A., Ayu, D., Cahya Dewi, I., Putu, I. A., & Wisdantini, A. (2023). Analisis Sentimen Terhadap Presidensi G20 2022 pada Media Sosial Twitter Menggunakan Metode Naïve Bayes. Media Online), 4(1), 553–561.
Muzaki, A., & Witanti, A. (2021). SENTIMENT ANALYSIS OF THE COMMUNITY IN THE TWITTER TO THE 2020 ELECTION IN PANDEMIC COVID-19 BY METHOD NAIVE BAYES CLASSIFIER. Jurnal Teknik Informatika (Jutif), 2(2), 101–107.
Putu Wibina Karsa Gumi, I., Syafrianto, A., Ilmu Komputer, F., Studi Informatika STMIK RAHMA Yogyakarta, P. el, Sisingamangaraja Jl Karangkajen No, J., Mergangsan, K., & Yogyakarta Author Emails, K. (2022). Perbandingan Algoritma Naïve Bayes dan Decision Tree Pada Sentimen Analisis. In IJCSR: The Indonesian Journal of Computer Science Research (Vol. 1).
Arfah Wahlil Pratama, M., fuad, M., & Komputer, S. (n.d.). Penentuan Status Penerima Bantuan Indonesia Pintar Pada Smkn 9 Bulukumba Dengan Metode Naive Bayes.
Križanić, S. (2020). Educational data mining using cluster analysis and decision tree technique: A case study. International Journal of Engineering Business Management, 12.
Aulia Sari, C., Sukmawati, A., Putri Aprilli, R., Sarah Kayaningtias, P., & Yudistira, N. (2022). PERBANDINGAN METODE NAÏVE BAYES, SUPPORT VECTOR MACHINE DAN DECISION TREE DALAM KLASIFIKASI KONSUMSI OBAT. 3, 33–41.
Musyaffa, I., & Kamayani, M. (2022). Dipresentasikan pada Tanggal 3 Desember. Universitas Muhammadiyah Prof. Dr. Hamka Jl. Tanah Merdeka, 7(6), 7261226.
Khatib Sulaiman, J., Danirmala, T., Sulistyo Nugroho, Y., & Muhammdiyah Surakarta, U. (n.d.). Analisis Sentimen Terhadap Topik Kenaikan Harga Bahan Bakar Minyak (BBM) pada Media Sosial Twitter. Indonesian Journal of Computer Science.
Rejeki, F., & Ayumi, V. (2023). Analisa Sentimen Mengenai Kenaikan Harga Bbm Menggunakan Metode Naïve Bayes Dan Support Vector Machine. JSAI : Journal Scientific and Applied Informatics, 6(1).
J., Akbar, F., Wira Saputra, H., Karel Maulaya, A., & Fikri Hidayat, M. (2022). MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of Decision Tree Algorithm C4.5 and Support Vector Regression for Stroke Disease Prediction Implementasi Algoritma Decision Tree C4.5 dan Support Vector Regression untuk Prediksi Penyakit Stroke. 2, 61–67.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Fadli, Agung Triayudi, Endah Tri Eshti Handayani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.