Mechanical and Barrier Properties of Biocellulose Nata de Coco-Based Edible Film: Influence of Purple Yam (Dioscorea alata) Flour and Glycerol Concentration

Authors

  • Muflihah Ramadhia Agricultural Technology Department, Politeknik Negeri Pontianak, Pontianak, Indonesia
  • Y. Erning Indrastuti Agricultural Technology Department, Politeknik Negeri Pontianak, Pontianak, Indonesia
  • Ledy Purwandani Agricultural Technology Department, Politeknik Negeri Pontianak, Pontianak, Indonesia

DOI:

https://doi.org/10.58905/demeter.v1i2.226

Keywords:

Biocomposites, Edible Film, Glycerol, Plasticizer, Purple yam flour

Abstract

Edible films represent biodegradable food packaging. Potential material used as an edible film is biocellulose nata de coco, but flour made from purple yams needs to be added to increase the solubility of composites in water. The purpose of this research was to study the effects of purple yam flour and glycerol concentrations on moisture, ash content, thickness, barrier properties (WVTR), and mechanical properties biocellulose based edible film. Edible films made with the proportion of slurry biocellulose and purple yam flour were 100: 0; 98: 2; 96: 4% and glycerol were added 0, 1, and 2% and aquades was added to the total volume of 200 ml. The suspension is put in a mould and dried in a 40 ° C oven for 24 hours. Increased concentrations of purple yam flour at biocomposite and glycerol reduce tensile strength and modulus of elasticity, increase the thickness of the edible film. Interaction between biocellulose-purple yam flour and glycerol at high concentrations reduced mechanical strength as a result of network integrity disruption. Interaction between biocellulose-purple yam flour and glycerol reduced moisture content but increased ash content. Glycerol concentrations that were too low and high cause antiplastizicer properties that affected the elongation at break and WVTR edible film. This study demonstrated that proportion of biocellulose-purple yam flour 98:2% and glycerol 1% has good potential for producing the edible films

References

M. Cortés-Rodríguez, C. Villegas-Yépez, J. H. Gil González, P. E. Rodríguez, and R. Ortega-Toro, “Development and evaluation of edible films based on cassava starch, whey protein, and bees wax,” Heliyon, vol. 6, no. 9, 2020, doi: 10.1016/j.heliyon.2020.e04884.

M. Lutfi, S. H. Sumarlan, B. Susilo, Wignyanto, R. Zenata, and L. P. R. Perdana, “The glycerol effect on mechanical behaviour of biodegradable plastic from the walur (Amorphophallus paenifolius Var. sylvestris),” Nat. Environ. Pollut. Technol., vol. 16, no. 4, pp. 1121–1124, 2017.

G. F. Nogueira, F. M. Fakhouri, and R. A. de Oliveira, “Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films,” Carbohydr. Polym., vol. 186, no. December 2017, pp. 64–72, 2018, doi: 10.1016/j.carbpol.2018.01.024.

E. Abdollahzadeh, S. M. Ojagh, A. A. I. Fooladi, B. Shabanpour, and M. Gharahei, “Effects of probiotic cells on the mechanical and antibacterial properties of sodium-caseinate films,” Appl. Food Biotechnol., vol. 5, no. 3, pp. 155–162, 2018, doi: 10.22037/afb.v%vi%i.20360.

D. A. Nugroho and P. Aji, “Characterization of Nata de Coco Produced by Fermentation of Immobilized Acetobacter xylinum,” Agric. Agric. Sci. Procedia, vol. 3, pp. 278–282, 2015, doi: 10.1016/j.aaspro.2015.01.053.

S. Mohainin Mohammad, N. Abd Rahman, M. Sahaid Khalil, and S. Rozaimah Sheikh Abdullah, “An Overview of Biocellulose Production Using Acetobacter xylinum Culture,” Adv. Biol. Res. (Rennes)., vol. 8, no. 6, pp. 307–313, 2014, doi: 10.5829/idosi.abr.2014.8.6.1215.

T. N. Elfiana, A. N. I. Fitria, E. Sedyadi, S. Y. Prabawati, and I. Nugraha, “Degradation Study of Biodegradable Plastic Using Nata De Coco as A Filler,” Biol. Med. Nat. Prod. Chem., vol. 7, no. 2, pp. 33–38, 2018, doi: 10.14421/biomedich.2018.72.33-38.

M. Faisal, T. Kou, Y. Zhong, and A. Blennow, “High Amylose-Based Bio Composites: Structures, Functions and Applications,” Polymers (Basel)., vol. 14, no. 6, pp. 1–22, 2022, doi: 10.3390/polym14061235.

A. I. Yeh, T. Y. Chan, and G. C. C. Chuang, “Effect of water content and mucilage on physico-chemical characteristics of Yam (Discorea alata Purpurea) starch,” J. Food Eng., vol. 95, no. 1, pp. 106–114, 2009, doi: 10.1016/j.jfoodeng.2009.04.014.

M. Dick, T. M. H. Costa, A. Gomaa, M. Subirade, A. D. O. Rios, and S. H. Flôres, “Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties,” Carbohydr. Polym., vol. 130, pp. 198–205, 2015, doi: 10.1016/j.carbpol.2015.05.040.

D. Ma, Y. Jiang, S. Ahmed, W. Qin, and Y. Liu, “Physical and antimicrobial properties of edible films containing Lactococcus lactis,” Int. J. Biol. Macromol., vol. 141, pp. 378–386, 2019, doi: 10.1016/j.ijbiomac.2019.09.006.

P. Pająk, I. Przetaczek-Rożnowska, and L. Juszczak, “Development and physicochemical, thermal and mechanical properties of edible films based on pumpkin, lentil and quinoa starches,” Int. J. Biol. Macromol., vol. 138, pp. 441–449, 2019, doi: 10.1016/j.ijbiomac.2019.07.074.

D. Muscat, B. Adhikari, R. Adhikari, and D. S. Chaudhary, “Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers,” J. Food Eng., vol. 109, no. 2, pp. 189–201, 2012, doi: 10.1016/j.jfoodeng.2011.10.019.

R. Arham, M. T. Mulyati, M. Metusalach, and S. Salengke, “Physical and mechanical properties of agar based edible film with glycerol plasticizer,” Int. Food Res. J., vol. 23, no. 4, pp. 1669–1675, 2016, doi: 10.31227/osf.io/tq2pf.

E. Basiak, A. Lenart, and F. Debeaufort, “Effect of starch type on the physico-chemical properties of edible films,” Int. J. Biol. Macromol., vol. 98, no. 96, pp. 348–356, 2017, doi: 10.1016/j.ijbiomac.2017.01.122.

R. Yudianti and L. Indrarti, “Effect of Water Soluble Polymer on Structure and Mechanical Properties of Bacterial Cellulose Composites,” J. Appl. Sci., vol. 8, no. 1, pp. 177–180, 2008.

L. Wu, T. Orikasa, K. Tokuyasu, T. Shiina, and A. Tagawa, “Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: Effects of process conditions on the quality attributes of the samples,” J. Food Eng., vol. 91, no. 4, pp. 560–565, 2009, doi: 10.1016/j.jfoodeng.2008.10.021.

K. D. Tafa, N. Satheesh, and W. Abera, “Mechanical properties of tef starch based edible films: Development and process optimization,” Heliyon, vol. 9, no. 2, p. e13160, 2023, doi: 10.1016/j.heliyon.2023.e13160.

A. C. Souza, G. E. O. Goto, J. A. Mainardi, A. C. V. Coelho, and C. C. Tadini, “Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties,” LWT - Food Sci. Technol., vol. 54, no. 2, pp. 346–352, 2013, doi: 10.1016/j.lwt.2013.06.017.

M. Jouki, N. Khazaei, M. Ghasemlou, and M. Hadinezhad, “Effect of glycerol concentration on edible film production from cress seed carbohydrate gum,” Carbohydr. Polym., vol. 96, no. 1, pp. 39–46, 2013, doi: 10.1016/j.carbpol.2013.03.077.

E. D. R. Zavareze et al., “Development of oxidised and heat-moisture treated potato starch film,” Food Chem., vol. 132, no. 1, pp. 344–350, 2012, doi: 10.1016/j.foodchem.2011.10.090.

S. M. Gonçalves, D. C. dos Santos, J. F. G. Motta, R. R. dos Santos, D. W. H. Chávez, and N. R. de Melo, “Structure and functional properties of cellulose acetate films incorporated with glycerol,” Carbohydr. Polym., vol. 209, no. May 2018, pp. 190–197, 2019, doi: 10.1016/j.carbpol.2019.01.031.

L. C. B. Reis, C. O. De Souza, J. B. A. Da Silva, A. C. Martins, I. L. Nunes, and J. I. Druzian, “Active biocomposites of cassava starch: The effect of yerba mate extract and mango pulp as antioxidant additives on the properties and the stability of a packaged product,” Food Bioprod. Process., vol. 94, no. April, pp. 382–391, 2015, doi: 10.1016/j.fbp.2014.05.004.

A. C. Souza, R. Benze, E. S. Ferrão, C. Ditchfield, A. C. V. Coelho, and C. C. Tadini, “Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature,” LWT - Food Sci. Technol., vol. 46, no. 1, pp. 110–117, 2012, doi: 10.1016/j.lwt.2011.10.018.

N. A. Yanti, S. W. Ahmad, L. O. A. N. Ramadhan, and T. Walhidayah, “Mechanical properties of edible film based bacterial cellulose from sago liquid waste using starch as stabilizer,” IOP Conf. Ser. Earth Environ. Sci., vol. 948, no. 1, 2021, doi: 10.1088/1755-1315/948/1/012063.

R. S. Ningrum, D. Sondari, D. Purnomo, P. Amanda, D. Burhani, and F. I. Rodhibilah, “Karakterisasi Edible Film Dari Pati Sagu Alami Dan Termodifikasi,” J. Kim. dan Kemasan, vol. 43, no. 2, p. 95, 2021, doi: 10.24817/jkk.v43i2.6963.

V. Jost, K. Kobsik, M. Schmid, and K. Noller, “Influence of plasticiser on the barrier, mechanical and grease resistance properties of alginate cast films,” Carbohydr. Polym., vol. 110, pp. 309–319, 2014, doi: 10.1016/j.carbpol.2014.03.096.

I. Rojas-Molina et al., “Study of structural and thermal changes in endosperm of quality protein maize during traditional nixtamalization process,” Cereal Chem., vol. 84, no. 4, pp. 304–312, 2007, doi: 10.1094/CCHEM-84-4-0304.

- Giyatmi, S. Melanie, D. Fransiska, M. Darmawan, and H. Irianto, “Barrier and physical properties of arrowroot starch-carrageenan based biofilms,” J. Bio-Science, vol. 25, no. November, pp. 45–56, 2018, doi: 10.3329/jbs.v25i0.37498.

Downloads

Published

14-02-2024