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Abstract. This study analyzes the interrelationships between weather parameters, including average 
temperature (Tavg), relative humidity (RH_avg), rainfall (RR), and average wind speed (ff_avg) in North 
Jakarta and Central Jakarta, and compares the performance of Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit (GRU) models in predicting these parameters. Data was collected from Tanjung Priok 
Maritime Meteorological Station in North Jakarta and Kemayoran Meteorological Station in Central Jakarta 
from December 2021 to December 2024. The results show that GRU performs better in North Jakarta, with 
RMSE of 9,02, MSE of 81,28, and MAE of 4,21 at 75 epochs, while LSTM yields RMSE of 10,02, MSE of 
100,34, and MAE of 4,62 at 50 epochs. Conversely, LSTM outperforms GRU in Central Jakarta, with RMSE 
of 8,96, MSE of 80,22, and MAE of 4,65 at 100 epochs, while GRU produces RMSE of 9,53, MSE of 90,78, 
and MAE of 4,85 at 75 epochs. GRU is more effective in capturing extreme fluctuations, while LSTM excels 
in predicting interrelationships between parameters. This study provides insights into selecting the 
appropriate weather prediction model based on the priority of prediction accuracy or the ability to capture 
extreme fluctuations. 
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1 Introduction 

Weather is an atmospheric phenomenon that greatly influences human life, especially in tropical countries 
such as Indonesia. Located on the equator, Indonesia experiences dynamic weather variations, ranging from 
clear skies to heavy rainfall. Jakarta, although located in a lowland area, frequently experiences extreme weather 
events such as heavy rainfall and heatwaves, which can disrupt various sectors, including agriculture, fisheries, 
transportation, and tourism. Weather is defined as the atmospheric condition measured comprehensively by 
considering the changes and developments of air phenomena [1]. 

As one of the largest metropolitan areas in Indonesia, Jakarta experiences highly dynamic and frequently 
changing weather. Sudden heavy rain can cause flooding, while long dry periods often trigger heatwaves. Rapid 
urban development, environmental degradation, and global climate change contribute to significant weather 
fluctuations in Jakarta. Changes in rainfall patterns, temperature, and humidity due to climate change can 
increase the risk of flooding and pose a threat to the agricultural sector [2]. 

The use of machine learning in weather prediction is not limited to rainfall but also includes other weather 
parameters that are time series data [3]. Deep learning, particularly Long Short-Term Memory (LSTM) and 
Gated Recurrent Unit (GRU), is widely used to accurately predict weather parameters. While LSTM is effective 
in handling complex time series data and requires greater computational resources, GRU is more efficient for 
smaller datasets [4]. Both methods address the vanishing gradient problem in Recurrent Neural Networks 
(RNN) and can process long-term temporal relationships between weather parameters. 

Although BMKG has developed weather prediction models, the accuracy of predictions remains a significant 
challenge. Experts at BMKG believe that the accuracy of weather predictions is still insufficient, which is why 
ongoing research is being conducted to select methods that can improve accuracy [5]. Research conducted in 
Bandung City showed that LSTM produced good accuracy in predicting rainfall, with an RMSE value of 12,24 
for training data and 8,86 for test data [6]. 

Similar research was conducted in Malang Regency using LSTM, showing promising results with an RMSE 
value of 10,16 [7]. In Pekanbaru City, a study also used LSTM and reported an RMSE of 21,328 for training 
data and 454,901 for test data [8]. Meanwhile, in Surabaya City, a study compared the performance of LSTM, 
GRU, and RNN, with LSTM showing the best performance with an MSE value of 0,489 [9]. Humidity is 
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influenced by temperature, air pressure, and wind movement, highlighting the importance of considering the 
interrelationship between weather parameters in the development of predictive models [10]. 

This research contributes to the development of weather prediction technology by analyzing the relationships 
between various weather parameters and comparing the effectiveness of LSTM and GRU models in different 
urban contexts. The findings of this study are expected to help develop more accurate and adaptive weather 
prediction systems, benefiting various sectors that rely on weather information for their operations. 

2 Methodology 

This study follows a systematic approach, starting with dataset collection and input, followed by data 
preprocessing to prepare the data for modeling. The research implements LSTM and GRU models for analysis, 
followed by a denormalization process to bring the results back to their original scale. Evaluation testing is then 
performed to assess the performance of the models. Finally, the interrelationship between weather parameters is 
analyzed. Figure 1 provides a clear picture of the flow of the research process. 

 

Figure 1. Research Methodology Flowchart 

2.1 Dataset Collection and Input  

The dataset for this study was sourced from two meteorological stations in Jakarta: Tanjung Priok Maritime 
Meteorological Station in North Jakarta and Kemayoran Meteorological Station in Central Jakarta, covering the 
period from December 2021 to December 2024. Time series data collected in continuous time sequence is one 
of the statistical methods that can be used to predict the probability structure of future situations [11]. 
Key weather parameters considered include: 

a. Average temperature (Tavg): Air temperature in an area can be measured based on two conditions: 
minimum and maximum air temperature [12]. 

b. Average relative humidity (RH_avg): Relative humidity is defined as the ratio of measured water vapor 
pressure to the maximum water vapor pressure that can be achieved at a given temperature and pressure 
[13]. 

c. Rainfall (RR): Rainfall is a key weather parameter that can cause changes in weather conditions in an 
area and plays a critical role in understanding atmospheric dynamics [14]. 

d. Average wind speed (ff_avg): Wind speed is a critical weather parameter that influences atmospheric 
dynamics through its interactions with temperature and humidity [15]. 

Parameters such as temperature, wind speed, and humidity were selected because they significantly 
influence rainfall, which is crucial for meteorological prediction [16]. 
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The data was obtained from the online database of the Indonesian Agency for Meteorological, 
Climatological and Geophysics (Badan Meteorologi, Klimatologi, dan Geofisika or simply BMKG), specifically 
from the official website at https://dataonline.bmkg.go.id/data-harian. BMKG provides comprehensive daily 
weather data for various regions in Indonesia, ensuring the reliability and accuracy of the dataset used in this 
study. 

2.2 Data Preprocessing 

Data preprocessing is a critical step to ensure the quality and integrity of the dataset before applying machine 
learning models. LSTM is designed to handle data with long-term temporal dependencies, making proper 
preprocessing essential [17]. The following steps were taken: 

a. Data Cleaning 
Duplicate and irrelevant data were removed. Missing values, indicated by placeholders such as "-" or 
"8888", were handled using imputation techniques. 

b. Handling Missing Data 
Missing values were imputed using the mean of the respective parameter over a specified period, as this 
approach is effective for datasets with normal distributions. 

c. Data Splitting 
The dataset was split into training (80%), validation (10%), and test (10%) sets to train and evaluate the 
models. 

d. Normalization 
Data normalization was performed using Min-Max scaling to ensure all weather parameters were within 
a comparable range of 0 to 1. The normalization formula is as follows: 

 
𝑋𝑋′ = (𝑥𝑥−𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋)

(𝑋𝑋𝑋𝑋𝑋𝑋𝑥𝑥−𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋)
    (1) 

 
Explanation: 
𝑋𝑋   = Original data. 
𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋  = Minimum and maximum values of the parameter. 
𝑋𝑋′   = Normalized value. 

2.3 Implementation of LSTM and GRU Models 

LSTM and GRU models were implemented for weather prediction, leveraging their ability to handle time 
series data and capture temporal dependencies. LSTM is designed to address the vanishing gradient problem in 
RNN by introducing memory cells and gate mechanisms (gates), such as forget gate, input gate, and output gate 
[18]. The LSTM approach enables complex modeling of meteorological parameters, allowing for more nuanced 
prediction of interrelated weather variables such as rainfall, humidity, and temperature [19]. 

a. LSTM Gates: Forget Gate, Input Gate, Candidate Cell State, Output Gate, Update Cell State, Hidden 
State. 

b. GRU Gates: Reset Gate, Update Gate, Candidate Hidden State, Current Hidden State. 
The models were trained and evaluated through the following steps: 
1. Model Architecture: Both LSTM and GRU architectures were chosen to handle time series data for 

weather prediction. LSTM was selected for capturing long-term dependencies, while GRU was 
chosen for its computational efficiency, especially for smaller datasets. Both models utilize hidden 
layers to learn relationships between relevant weather parameters. 

2. Training: The models were trained on pre-processed weather data for different epochs: 
a) LSTM North Jakarta: 50 epochs. 
b) LSTM Central Jakarta: 100 epochs. 
c) GRU North Jakarta: 75 epochs. 
d) GRU Central Jakarta: 75 epochs. 

Adam optimizer was used to maximize accuracy and minimize error. Validation data helped monitor 
performance and detect overfitting. If validation loss stopped improving, early stopping was applied. Final 
evaluation was done on test data to assess the models' generalization ability. 

a. Model Storage: After training, the best-performing models from both LSTM and GRU were saved for 
future use, ensuring faster predictions in subsequent implementations. 
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2.3.1 LSTM Gates and States Calculations 

LSTM uses three main gates: Forget Gate, Input Gate, and Output Gate. In addition, the LSTM process also 
involves calculating Candidate Cell State, Update Cell State, and Hidden State. The order of the operations is as 
follows: 

a. Forget Gate: The forget gate determines which information from the previous time step will be 
discarded from the cell state. 

 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓�   (2) 

 
b. Input Gate: The input gate controls how much new information will be added to the cell state. 
 

𝑋𝑋𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑋𝑋 ∙ [ℎ𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑋𝑋)   (3) 
 

c. Candidate Cell State: The candidate cell state represents the potential new information to be added to the 
memory. 

 
�̃�𝐶𝑡𝑡 = tanh(𝑊𝑊𝐶𝐶 ∙ [ℎ𝑡𝑡−1, 𝑋𝑋𝑡𝑡] + 𝑏𝑏𝐶𝐶)  (4) 

 
d. Output Gate: The output gate determines which part of the cell state will be output as the hidden state. 

 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑋𝑋𝑡𝑡]) + 𝑏𝑏𝑜𝑜   (5) 

 
e. Update Cell State and Hidden State: The cell state is updated by combining the previous state with the 

new candidate cell state, weighted by the forget and input gates. 
 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑋𝑋𝑡𝑡 ∗ �̃�𝐶𝑡𝑡   (6) 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡)    (7) 
 

The final Hidden State ℎ𝑡𝑡  is generated after applying the output gate to the updated cell state 𝐶𝐶𝑡𝑡. 
Explanation: 
𝑋𝑋𝑡𝑡  = Input data at time step 𝑡𝑡. 
ℎ𝑡𝑡−1  = Hidden state from the previous time step. 
𝐶𝐶𝑡𝑡−1  = Cell state from the previous time step. 
𝑊𝑊𝑓𝑓, 𝑊𝑊𝑋𝑋, 𝑊𝑊𝐶𝐶, 𝑊𝑊𝑜𝑜  = Weight matrices for each gate. 
𝑏𝑏𝑓𝑓, 𝑏𝑏𝑋𝑋, 𝑏𝑏𝐶𝐶 , 𝑏𝑏𝑜𝑜 = Bias terms for each gate. 
𝜎𝜎  = Sigmoid activation function. 
tanh  = Hyperbolic tangent activation function. 

2.3.2 GRU Gates and States Calculations 

GRU uses two main gates: Reset Gate and Update Gate. It combines the memory updating process into one 
hidden state. The GRU also includes the Candidate Hidden State and Current Hidden State. The operations are 
as follows: 

a. Reset Gate: The reset gate determines how much of the previous hidden state should be forgotten. 
 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ∙ 𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑟𝑟 ∙ ℎ𝑡𝑡−1 + 𝑏𝑏𝑟𝑟)  (8) 
 

b. Update Gate: The update gate controls how much of the new information should be added to the hidden 
state. 

 
𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ∙ 𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑧𝑧 ∙ ℎ𝑡𝑡−1 + 𝑏𝑏𝑧𝑧)  (9) 

 
c. Candidate Hidden State: The candidate hidden state represents the new information to be added to the 

hidden state. 
 

ℎ�𝑡𝑡 = tanh(𝑊𝑊ℎ ∙ 𝑋𝑋𝑡𝑡 + 𝑈𝑈ℎ ∙ (𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1) + 𝑏𝑏ℎ) (10) 
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d. Current Hidden State: The current hidden state is the weighted combination of the previous hidden state 

and the new candidate hidden state. 
 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ�𝑡𝑡   (11) 
 

Explanation: 
𝑋𝑋𝑡𝑡  = Input data at time step 𝑡𝑡. 
ℎ𝑡𝑡−1  = Hidden state from the previous time step. 
𝑊𝑊𝑟𝑟, 𝑊𝑊𝑧𝑧, 𝑊𝑊ℎ = Weight matrices that connect 𝑋𝑋𝑡𝑡 to the gates. 
𝑈𝑈𝑟𝑟 , 𝑈𝑈𝑧𝑧, 𝑈𝑈ℎ = Weight matrices that connect ℎ𝑡𝑡−1 to the gates. 
𝑏𝑏𝑟𝑟, 𝑏𝑏𝑧𝑧, 𝑏𝑏ℎ = Bias terms for each gate. 
𝜎𝜎  = Sigmoid activation function. 
tanh  = Hyperbolic tangent activation function. 

2.4 Denormalization 

After predictions were made, denormalization was performed to return the data to its original scale using the 
inverse of the Min-Max scaling formula: 

 
𝑑𝑑 =  𝑑𝑑′(𝑋𝑋𝑋𝑋𝑋𝑋 − 𝑋𝑋𝑋𝑋𝑋𝑋)  +  𝑋𝑋𝑋𝑋𝑋𝑋   (12) 

 
Explanation: 
𝑑𝑑′  = Predicted normalized value. 
𝑋𝑋𝑋𝑋𝑋𝑋 𝑋𝑋𝑋𝑋𝑋𝑋  = Minimum and maximum values of the respective parameter. 
𝑑𝑑  = Denormalized value. 

2.5 Evaluation Testing 

LSTM and GRU models was conducted using three key metrics: Root Mean Square Error (RMSE), Mean 
Square Error (MSE), and Mean Absolute Error (MAE). MSE and RMSE are used to reflect overall model errors 
[20], while MSE provides an overview of overall error distribution and is also sensitive to large errors, making it 
suitable for measuring average error [21]. Furthermore, the smaller the RMSE and MAE values, the better the 
model in predicting data with a low error rate [22]. 

a. Root Mean Square Error (RMSE): RMSE measures the square root of the average squared differences 
between predicted and actual values. It penalizes larger errors more than smaller ones, making it sensitive 
to outliers. 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑋𝑋
∑ (𝑦𝑦𝑋𝑋 − 𝑦𝑦�𝑋𝑋)2𝑋𝑋
𝑋𝑋=1    (13) 

 
A lower RMSE indicates better model performance, as it implies that the predictions are closer to the 
actual values. 

b. Mean Square Error (MSE): MSE is calculated by averaging the squared differences between predicted 
and actual values. It is more sensitive to larger errors than MAE, which makes it useful for identifying 
larger discrepancies in the model's predictions. 

 
𝑅𝑅𝑅𝑅𝑅𝑅 = 1

𝑋𝑋
∑ (𝑦𝑦𝑋𝑋 − 𝑦𝑦�𝑋𝑋)2𝑋𝑋
𝑋𝑋=1     (14) 

 
Where the terms are defined as above. Like RMSE, a lower MSE indicates better performance. MSE is 
particularly useful when you want to give higher importance to larger errors. 

c. Mean Absolute Error (MAE): MAE calculates the average of the absolute differences between the 
predicted and actual values. It is less sensitive to outliers than RMSE and MSE, making it a 
straightforward and easy-to-interpret metric. 

 
𝑅𝑅𝑀𝑀𝑅𝑅 = 1

𝑋𝑋
∑ |𝑦𝑦𝑋𝑋 − 𝑦𝑦�𝑋𝑋|𝑋𝑋
𝑋𝑋=1     (15) 
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A lower MAE indicates that the predictions are, on average, closer to the actual values, with less 
emphasis on large deviations. MAE is particularly useful when a straightforward understanding of 
average prediction error is needed. 

 
Explanation: 
𝑦𝑦𝑋𝑋 = Actual value of the weather parameter. 
𝑦𝑦�𝑋𝑋 = Predicted value of the weather parameter. 
𝑋𝑋 = Number of days in the evaluated data. 
 

These metrics were selected due to their wide acceptance in the literature and their flexibility in handling 
various types of data without introducing significant bias. The comprehensive use of these three metrics helps to 
evaluate the model's performance across multiple aspects, offering insights into how well the model can predict 
weather parameters, including temperature, humidity, rainfall, and wind speed.  

2.6 Analysis of the Interrelationship Between Weather Parameters 

The analysis of interrelationships between weather parameters is conducted through three comprehensive 
approaches. Each approach provides unique insights into how weather parameters interact and how well the 
models capture these relationships. 

First, the Evaluation Metrics Analysis employs three key statistical measures: RMSE, MSE, and MAE. 
These metrics are used to quantitatively assess the prediction accuracy of both LSTM and GRU models in North 
Jakarta and Central Jakarta. The comparative analysis of these metrics provides a statistical foundation for 
understanding how well each model performs in different regions and for different weather parameters. 

Second, the Visualization Analysis focuses on comparing prediction graphs with actual data to understand 
how well the models capture weather patterns. This analysis examines the models' capabilities in handling 
various aspects of weather data, including regular weather patterns, extreme fluctuations, parameter 
interdependencies, and temporal variations. Through visual analysis, it is possible to assess how effectively each 
model adapts to different weather conditions and identify patterns in the data. 

Third, the Direct Prediction Model Analysis evaluates the models' accuracy in predicting specific weather 
parameters: average temperature (Tavg), relative humidity (RH_avg), rainfall (RR), and average wind speed 
(ff_avg). This analysis includes a comparative assessment of model performance between the two regions and 
examines how different parameters influence each other based on prediction results. This direct approach helps 
understand the practical applicability and reliability of each model in real-world weather prediction scenarios. 

The combined insights from these three analytical approaches provide a comprehensive understanding of the 
models' capabilities and limitations in predicting weather parameters and their interrelationships. This 
understanding is crucial for determining which model is more suitable for specific prediction tasks and 
environmental conditions. 

3 Results and Discussion 

This section presents the results from the application of LSTM and GRU models, followed by an evaluation 
of the interrelationship between weather parameters. 

3.1 Dataset Collection and Input 

The dataset used for this study spans from December 1, 2021, to December 31, 2024, and was collected from 
the Tanjung Priok and Kemayoran Meteorological Stations in Central Jakarta. A sample dataset from December 
2021 was used for training and testing, including key weather parameters such as temperature (Tavg), relative 
humidity (RH_avg), rainfall (RR), and wind speed (ff_avg), all obtained from BMKG's database. Table 1 below 
shows a sample of the raw data from December 1 to December 10, 2021, collected from the Kemayoran 
Meteorological Station in Central Jakarta. 

Table 1. Raw Dataset Sample 

Date Tavg RH_avg RR ff_avg 
01-12-2021 29,9 63 - 2 
02-12-2021 30,7 66 0 3 
03-12-2021 29,6 71 - 2 
04-12-2021 - 85 0 1 

SAGA: Journal of Technology and Information Systems 
Vol 2, Issue 4, November 2024, Page 328-343 
ISSN: 2985-8933 (Media Online) 
DOI: 10.58905/SAGA.v2i4.398

333



 
 
 
 

05-12-2021 26,2 85 2,5 0 
06-12-2021 26,8 84 11,9 1 
07-12-2021 26,8 86 65,6 1 
08-12-2021 28,1 81 1,5 1 
09-12-2021 28 84 30,5 2 
10-12-2021 28,1 82 0,6 2 

3.2 Data Preprocessing 

Data preprocessing involved several essential steps: data cleaning, handling missing values, and normalizing 
the data. First, duplicate entries and irrelevant data were removed to ensure data quality. Missing values were 
addressed using mean imputation, and normalization was performed using Min-Max Scaling to bring all 
parameters to a uniform scale between 0 and 1. This step ensured that the dataset was well-prepared for 
modeling with LSTM and GRU. Table 2 below shows a sample of the cleaned data, and Table 3 displays the 
normalized data. 

Table 2. Dataset Sample After Data Cleaning 

Date Tavg RH_avg RR ff_avg 
01-12-2021 29,9 63 8,54 2 
02-12-2021 30,7 66 0 3 
03-12-2021 29,6 71 8,54 2 
04-12-2021 28,2 85 0 1 
05-12-2021 26,2 85 2,5 0 
06-12-2021 26,8 84 11,9 1 
07-12-2021 26,8 86 65,6 1 
08-12-2021 28,1 81 1,5 1 
09-12-2021 28 84 30,5 2 
10-12-2021 28,1 82 0,6 2 

Table 3. Dataset Sample After Normalization 

Date Tavg RH_avg RR ff_avg 
01-12-2021 0,822 0 0,130 0,667 
02-12-2021 1 0,12 0 1 
03-12-2021 0,756 0,32 0,130 0,667 
04-12-2021 0,451 0,88 0 0,333 
05-12-2021 0 0,88 0,038 0 
06-12-2021 0,133 0,84 0,181 0,333 
07-12-2021 0,133 0,92 1 0,333 
08-12-2021 0,422 0,72 0,023 0,333 
09-12-2021 0,400 0,84 0,465 0,667 
10-12-2021 0,422 0,76 0,009 0,667 

3.3 Implementation of LSTM and GRU Models 

Both the LSTM and GRU models were used to predict the weather parameters. LSTM, with its forget, input, 
and output gates, captured long-term dependencies in the time series data, while GRU, using reset and update 
gates, was tested for comparison. Both models processed the dataset and were evaluated on their ability to 
predict weather data accurately. Tables 4 and 5 below display the results from the manual calculations for the 
LSTM and GRU models, respectively, using the sample data. 

Table 4. Manual LSTM Calculation Results from the Dataset Sample 

Date Forget 
Gate (𝒇𝒇𝒕𝒕) 

Input 
Gate (𝒊𝒊𝒕𝒕) 

Candidate 
Cell State 

(𝑪𝑪�𝒕𝒕) 

Output 
Gate (𝒐𝒐𝒕𝒕) 

Cell 
State 
(𝑪𝑪𝒕𝒕) 

Hidden 
State 
(𝒉𝒉𝒕𝒕) 

01-12-2021 0,638 0,608 0,155 0,584 0,0944 0,055 
02-12-2021 0,668 0,694 0,0295 0,709 0,0835 0,059 
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03-12-2021 0,612 0,672 0,443 0,590 0,3482 0,197 
04-12-2021 0,5546 0,566 0,521 0,5115 0,4883 0,2319 
05-12-2021 0,4963 0,5037 0,3504 0,4736 0,4187 0,1875 
06-12-2021 0,5019 0,5159 0,2338 0,4957 0,3305 0,1581 
07-12-2021 0,6113 0,5467 0,0262 0,5410 0,2162 0,1153 
08-12-2021 0,5300 0,5227 0,2581 0,5171 0,2494 0,1263 
09-12-2021 0,5619 0,5368 0,2199 0,5393 0,2582 0,1362 
10-12-2021 0,5417 0,5237 0,2801 0,5220 0,2865 0,1456 

Table 5. Manual GRU Calculation Results from the Dataset Sample 

Date Reset Gate 
(𝒓𝒓𝒕𝒕) 

Update 
Gate (𝒛𝒛𝒕𝒕) 

Candidate 
Hidden 

State (𝒉𝒉�𝒕𝒕) 

Current 
Hidden 

State (𝒉𝒉𝒕𝒕) 
01-12-2021 0,708 0,632 0,794 0,502 
02-12-2021 0,735 0,678 0,853 0,739 
03-12-2021 0,749 0,688 0,785 0,770 
04-12-2021 0,733 0,706 0,667 0,698 
05-12-2021 0,693 0,666 0,417 0,511 
06-12-2021 0,705 0,678 0,620 0,583 
07-12-2021 0,776 0,723 0,811 0,746 
08-12-2021 0,713 0,682 0,694 0,710 
09-12-2021 0,748 0,719 0,779 0,759 
10-12-2021 0,734 0,662 0,844 0,814 

3.4 Denormalization 

After generating predictions with the models, the results were still in their normalized form. Denormalization 
was applied to return the predictions to their original scale, allowing for direct comparison with actual weather 
data. This process ensures that the predicted values are in the correct unit scale, making the evaluation 
meaningful. Table 6 below shows the sample data that has been denormalized back to its original scale. 

Table 6. Dataset Sample After Denormalization 

Date Tavg 
LSTM 

Tavg 
GRU 

RH_avg 
LSTM 

RH_avg 
GRU 

RR 
LSTM 

RR 
GRU 

ff_avg 
LSTM 

ff_avg 
GRU 

01-12-2021 26,45 28,46 64,38 75,55 3,61 32,93 0,17 1,51 
02-12-2021 26,47 29,53 64,48 81,48 3,87 48,51 0,18 2,22 
03-12-2021 27,09 29,67 67,93 82,25 12,92 50,55 0,59 2,31 
04-12-2021 27,24 29,34 68,80 80,45 15,21 45,75 0,70 2,09 
05-12-2021 27,04 28,50 67,69 75,78 12,30 33,47 0,56 1,53 
06-12-2021 26,91 28,82 66,95 77,58 10,37 38,23 0,47 1,75 
07-12-2021 26,72 29,56 65,88 81,65 7,56 48,94 0,35 2,24 
08-12-2021 26,77 29,40 66,16 80,75 8,29 46,50 0,38 2,13 
09-12-2021 26,81 29,62 66,41 81,98 8,95 49,79 0,41 2,28 
10-12-2021 26,86 29,86 66,64 83,35 9,55 53,39 0,44 2,44 

3.5 Evaluation Testing 

The performance of the LSTM and GRU models was evaluated using three main metrics: RMSE, MSE, and 
MAE. These metrics were used to measure the prediction error in comparison to the actual weather data. 

Table 7 below presents an example of the calculated differences (𝑦𝑦𝑋𝑋 − 𝑦𝑦�𝑋𝑋) for the sample data on 
temperature (Tavg) in the LSTM method. It is important to note that 𝑦𝑦𝑋𝑋 represents the actual value of the 
weather parameter (Tavg) from the dataset, and 𝑦𝑦�𝑋𝑋 represents the predicted value of the weather parameter 
(Tavg) from the model's output. 
𝑦𝑦𝑋𝑋 = Actual value of the weather parameter (Tavg). 
𝑦𝑦�𝑋𝑋 = Predicted value of the weather parameter (Tavg). 
𝑋𝑋 = Number of days in the evaluated data (10 days, corresponding to the sample from December 1 to 
December 10, 2021). 
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This calculation is done for each day in the dataset. Table 7 provides a sample calculation of the difference 
between the actual and predicted values for the Tavg parameter. 

Table 7. Calculation of the Difference Between the Actual Value and the Predicted Value (Tavg LSTM) 

Day 𝒚𝒚𝒊𝒊 𝒚𝒚�𝒊𝒊 Difference (𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊) Squared Difference (𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊)𝟐𝟐 
1 29,9 26,45 3,45 11,9025 
2 30,7 26,47 4,23 17,8929 
3 29,6 27,09 2,51 6,3001 
4 28,2 27,24 0,96 0,9216 
5 26,2 27,04 -0,84 0,7056 
6 26,8 26,91 -0,11 0,0121 
7 26,8 26,72 0,08 0,0064 
8 28,1 26,77 1,33 1,7689 
9 28,0 26,81 1,19 1,4161 

10 28,1 26,86 1,24 1,5376 
Total 14,04 42,4638 

 
Following this, the evaluation metrics for the Tavg parameter were computed to assess the accuracy of the 

models. 
a. Calculate RMSE using the total squared differences 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �42,4638
10

≈ �4,24638 ≈ 2,06 

 
b. Calculate RMSE using the total squared differences 
 

𝑅𝑅𝑅𝑅𝑅𝑅 =
42,4638

10
≈ 4,2464 

 
c. Calculate MAE using the total differences 
 

𝑅𝑅𝑀𝑀𝑅𝑅 =
14,04

10
≈ 1,404 

 
Following the manual calculation of RMSE, MSE, and MAE for the Tavg parameter, Table 8 presents the 

evaluation results for all parameters, including temperature (Tavg), relative humidity (RH_avg), rainfall (RR), 
and wind speed (ff_avg), based on the predictions from the LSTM and GRU models. 

Table 8. Evaluation Test Results from the Dataset Sample 

Parameters and Methods RMSE MSE MAE 
Tavg LSTM 2,06 4,25 1,40 
Tavg GRU 1,71 2,91 1,56 

RH_avg LSTM 14,27 203,68 12,44 
RH_avg GRU 8,34 69,55 6,74 

RR LSTM 20,85 434,74 13,51 
RR GRU 37,31 1391,98 35,17 

ff_avg LSTM 1,41 1,97 1,19 
ff_avg GRU 0,90 0,81 0,80 

3.6 Analysis of the Interrelationship Between Weather Parameters 

This section presents the analysis of the relationship between weather parameters, including insights based 
on evaluation metrics, visualizations, and direct model prediction results. 
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3.6.1 Based on Evaluation Metrics 

Table 9 below presents the evaluation results from the full dataset, highlighting the best-performing models 
based on their evaluation metrics (RMSE, MSE, and MAE). The table emphasizes the performance of the 
LSTM and GRU models across different epochs and regions (North Jakarta and Central Jakarta). 

Table 9. Evaluation Test Results from the Dataset 

Model Epochs Region Train 
RMSE 

Test 
RMSE 

Train 
MSE 

Test 
MSE 

Train 
MAE 

Test 
MAE 

LSTM 25 North 
Jakarta 

10,18 11,17 103,68 124,88 3,84 5,36 

LSTM 50 North 
Jakarta 

10,15 10,02 103,03 100,34 4,01 4,62 

LSTM 75 North 
Jakarta 

10,41 10,25 108,33 105,09 4,24 4,96 

LSTM 100 North 
Jakarta 

9,90 11,03 98,09 121,60 3,59 5,27 

LSTM 25 Central 
Jakarta 

7,48 9,62 55,90 92,51 3,13 4,90 

LSTM 50 Central 
Jakarta 

7,71 10,11 59,38 102,19 3,13 5,25 

LSTM 75 Central 
Jakarta 

7,12 9,40 50,69 88,29 3,07 4,81 

LSTM 100 Central 
Jakarta 

7,25 8,96 52,50 80,22 3,19 4,65 

GRU 25 North 
Jakarta 

10,20 11,32 104,09 128,09 3,88 5,34 

GRU 50 North 
Jakarta 

10,00 10,83 100,09 117,36 3,60 5,04 

GRU 75 North 
Jakarta 

9,86 9,02 97,25 81,28 3,71 4,21 

GRU 100 North 
Jakarta 

9,49 9,64 90,02 92,83 3,46 4,43 

GRU 25 Central 
Jakarta 

7,57 9,95 57,34 99,10 3,10 5,07 

GRU 50 Central 
Jakarta 

7,32 9,90 53,64 97,98 3,12 4,99 

GRU 75 Central 
Jakarta 

7,37 9,53 54,38 90,78 3,04 4,85 

GRU 100 Central 
Jakarta 

7,88 10,70 62,08 114,54 3,14 5,43 

 
a. Best Results Based on Model and Region 

1. LSTM 
a) North Jakarta: 50 epoch (Test RMSE: 10,02, Test MSE: 100,34, Test MAE: 4,62) 
b) Central Jakarta: 100 epoch (Test RMSE: 8,96, Test MSE: 80,22, Test MAE: 4,65) 

2. GRU 
a) North Jakarta: 75 epoch (Test RMSE: 9,02, Test MSE: 81,28, Test MAE: 4,21) 
b) Central Jakarta: 75 epoch (Test RMSE: 9,53, Test MSE: 90,78, Test MAE: 4,85) 

b. Best Overall Results 
1. North Jakarta: GRU 75 epoch (Test RMSE: 9,02, Test MSE: 81,28, Test MAE: 4,21) 
2. Central Jakarta: LSTM 100 epoch (Test RMSE: 8,96, Test MSE: 80,22, Test MAE: 4,65) 

c. Conclusion Based on Evaluation Metrics 
The evaluation results show that: 
1. In North Jakarta, GRU (75 epochs) outperforms LSTM (50 epochs) across all metrics: RMSE, MSE, 

and MAE. 
2. In Central Jakarta, LSTM (100 epochs) outperforms GRU (75 epochs) across all metrics: RMSE, 

MSE, and MAE. 
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In summary, GRU is more effective for weather prediction in North Jakarta, while LSTM performs better in 
Central Jakarta based on the evaluation metrics. However, the accuracy based on visualization and model 
prediction results will be analyzed further. 

3.6.2 Based on Visualization 

The following visualizations (Figures 2 to 5) provide insights into how well the models (LSTM and GRU) 
captured the weather patterns across different parameters. 

 
Figure 2. LSTM Prediction vs Actual Data Chart for North Jakarta 

 
Figure 3. GRU Prediction vs Actual Data Chart for North Jakarta 
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Figure 4. LSTM Prediction vs Actual Data Chart for Central Jakarta 

 
Figure 5. GRU Prediction vs Actual Data Chart for Central Jakarta 

a. Data Source: The blue line represents actual weather data, while the orange and green lines represent 
predictions from the training and testing data, respectively. 

b. LSTM Model Analysis (North Jakarta): 
1. Tavg (Temperature Average): LSTM captures the general temperature trend but is less responsive to 

rapid fluctuations. Predictions are smoother compared to actual data. 
2. RH_avg (Relative Humidity Average): LSTM performs reasonably well in tracking humidity 

patterns, though some small deviations are observed in peak values. 
3. RR (Rainfall): LSTM struggles with capturing extreme values of rainfall, leading to smoother 

predictions that fail to capture spikes in rainfall. 
4. ff_avg (Wind Speed Average): LSTM captures the general wind speed trends but is less accurate in 

predicting extreme values. 
c. GRU Model Analysis (North Jakarta): 

1. Tavg (Temperature Average): GRU is more responsive to smaller fluctuations, better capturing 
seasonal patterns compared to LSTM. 

2. RH_avg (Relative Humidity Average): GRU captures humidity changes more effectively than LSTM. 
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3. RR (Rainfall): GRU handles rainfall spikes better, providing more accurate predictions of fluctuating 
rainfall. 

4. ff_avg (Wind Speed Average): GRU performs better in predicting wind speed extremes. 
d. LSTM Model Analysis (Central Jakarta): 

1. Tavg (Temperature Average): LSTM captures the overall temperature trend well but tends to smooth 
out rapid changes. The predictions are close to actual values for most of the time, though LSTM 
sometimes struggles with sudden temperature shifts. 

2. RH_avg (Relative Humidity Average): Similar to North Jakarta, LSTM tracks humidity well but has 
some difficulties in capturing sharp changes in humidity. 

3. RR (Rainfall): Like North Jakarta, LSTM struggles to predict extreme fluctuations in rainfall. The 
model fails to capture the intensity of rainfall peaks. 

4. ff_avg (Wind Speed Average): LSTM performs reasonably well for general wind speed trends but 
doesn't accurately predict the extremes in wind speed. 

e. GRU Model Analysis (Central Jakarta): 
1. Tavg (Temperature Average): GRU captures the seasonal trends in temperature more effectively than 

LSTM, especially with sudden temperature shifts. 
2. RH_avg (Relative Humidity Average): GRU follows changes in humidity more accurately than 

LSTM, making it more reliable for this parameter. 
3. RR (Rainfall): GRU performs better than LSTM in predicting fluctuating rainfall values, particularly 

when there are sharp increases or decreases in rainfall. 
4. ff_avg (Wind Speed Average): GRU excels at predicting wind speed fluctuations and extreme values, 

outperforming LSTM in this aspect. 
f. Conclusion Based on Visualization 

Based on the visual analysis, the GRU model outperforms LSTM in capturing trends and fluctuations in 
weather parameters, especially in handling sudden changes in the test data. While LSTM performs 
reasonably well in recognizing general patterns for temperature (Tavg) and humidity (RH_avg), it 
struggles with predicting extreme changes. Both models face challenges in predicting rainfall (RR) and 
wind speed (ff_avg) due to their high variability, but GRU remains more stable and accurate in capturing 
spikes and trend changes. This makes GRU the superior model for weather prediction analysis in both 
North Jakarta and Central Jakarta. 

3.6.3   Based on Direct Model Prediction Results 

Table 10 and Table 11 below compare the predicted values from LSTM and GRU against the actual values 
for North Jakarta (July 6, 2024) and Central Jakarta (July 6, 2024), respectively. 

a. North Jakarta (July 6, 2024): 
LSTM outperforms GRU as it produces predictions closer to the actual values for all parameters (Tavg, 
RH_avg, RR, and ff_avg). 

b. Central Jakarta (July 6, 2024): 
LSTM performs better for 2 out of 4 parameters: RH_avg and ff_avg. However, GRU performs better for 
2 out of 4 parameters: Tavg and RR. 

Table 10. Comparison of Prediction Results and Actual Values for North Jakarta (July 6, 2024) 

Parameter Actual Value LSTM Prediction GRU Prediction Best Model 
Tavg 25 27,29 21,19 LSTM 

RH_avg 92 65,98 60,94 LSTM 
RR 25 15,63 11,33 LSTM 

ff_avg 1 1,46 0,12 LSTM 

Table 11. Comparison of Prediction Results and Actual Values for Central Jakarta (July 6, 2024) 

Parameter Actual Value LSTM Prediction GRU Prediction Best Model 
Tavg 24,8 27,22 26,40 GRU 

RH_avg 92 51,67 50,13 LSTM 
RR 15,3 41,44 18,32 GRU 

ff_avg 0 0,79 1,40 LSTM 
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c. Conclusion Based on Direct Model Prediction Results 
In North Jakarta, LSTM provides more accurate predictions for all weather parameters. In Central 
Jakarta, LSTM is more accurate for two parameters (RH_avg and ff_avg), while GRU performs better for 
two parameters (Tavg and RR). Overall, LSTM is the more reliable model for North Jakarta, while both 
LSTM and GRU perform better in certain aspects of Central Jakarta's weather predictions. 

3.6.4 Conclusion of Results and Discussion 

Based on the analyses conducted in the previous sections, the following conclusions can be drawn: 
a. Based on Evaluation Metrics 

In section 3.6.1, the evaluation of the models was performed using three primary metrics: RMSE, MSE, 
and MAE. The results show: 
1. In North Jakarta, the GRU model outperforms LSTM with lower test RMSE, MSE, and MAE values, 

indicating that GRU is more effective in predicting weather parameters in this region. 
2. In Central Jakarta, the LSTM model outperforms GRU with lower test RMSE, MSE, and MAE 

values, suggesting that LSTM is more effective in predicting weather parameters in this region. 
b. Based on Visualization 

In section 3.6.2, the visual analysis compared the predicted values with the actual data and examined how 
the models captured fluctuations in the weather data. The results indicate: 
1. LSTM performs reasonably well in capturing the general trends for temperature (Tavg) and relative 

humidity (RH_avg). However, it struggles to capture high fluctuations and extreme values in rainfall 
(RR) and wind speed (ff_avg). This suggests that LSTM is less effective in capturing extreme 
patterns that occur frequently in these parameters. 

2. GRU shows more consistent performance across all four parameters (Tavg, RH_avg, RR, and 
ff_avg). It is better at capturing fluctuations and extreme values, especially in RR and ff_avg, where 
LSTM tends to fail to predict accurately. 

c. Based on Direct Model Prediction Results 
In section 3.6.3, the models were tested for direct predictions based on manual input provided by the 
user. The results show: 
1. In North Jakarta, LSTM performs better, as its predictions are closer to the actual values for all four 

weather parameters (Tavg, RH_avg, RR, and ff_avg). 
2. In Central Jakarta, LSTM is superior for two parameters (RH_avg and ff_avg), while GRU performs 

better for two parameters (Tavg and RR). 
d. Final Conclusion 

Based on the findings from the evaluation metrics, visualizations, and direct model predictions, the 
following conclusions can be made: 
1. If focusing on evaluation metrics: 

GRU outperforms LSTM in North Jakarta due to better performance across all evaluation metrics 
(RMSE, MSE, MAE). In contrast, LSTM performs better in Central Jakarta, excelling in all 
evaluation metrics compared to GRU. 

2. If focusing on visualization: 
GRU demonstrates superior consistency in capturing fluctuations and extreme values in both regions 
(North Jakarta and Central Jakarta), especially for challenging parameters like RR (rainfall) and 
ff_avg (wind speed), making it more reliable in dealing with unpredictable weather patterns. 

3. If focusing on direct model predictions: 
LSTM excels in North Jakarta, providing more accurate predictions for all four weather parameters. 
In Central Jakarta, LSTM predicts two weather parameters more accurately than GRU, which only 
outperforms LSTM in predicting Tavg and RR (wind speed, ff_avg). 

In conclusion, LSTM proves to be more accurate for direct weather parameter predictions, especially in 
North Jakarta, where it successfully predicts all four parameters with greater accuracy. However, GRU excels in 
capturing extreme patterns, particularly for Tavg and RR, making it more reliable in handling fluctuating 
weather conditions. Therefore, the choice between LSTM and GRU should depend on the user's specific needs: 
whether they prioritize statistical accuracy, the ability to capture extreme fluctuations, or the accuracy of direct 
predictions. 
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4 Conclusion 

Based on the evaluation of the models, the prediction accuracy of weather parameters such as average 
temperature (Tavg), relative humidity (RH_avg), rainfall (RR), and average wind speed (ff_avg) in both North 
Jakarta and Central Jakarta has been influenced by the interrelationships between these parameters. 

In terms of evaluation metrics, the GRU model demonstrated superior performance in North Jakarta, 
achieving a Test RMSE of 9,02, Test MSE of 81,28, and Test MAE of 4,21 at 75 epochs. In contrast, LSTM 
yielded a Test RMSE of 10,02, Test MSE of 100,34, and Test MAE of 4,62 at 50 epochs. However, in Central 
Jakarta, LSTM outperformed GRU with a Test RMSE of 8,96, Test MSE of 80,22, and Test MAE of 4,65 at 100 
epochs, whereas GRU produced a Test RMSE of 9,53, Test MSE of 90,78, and Test MAE of 4,85 at 75 epochs. 
In the challenging environment of North Jakarta, where fluctuations are more pronounced, GRU proved more 
effective in capturing extreme variations in parameters like rainfall (RR) and wind speed (ff_avg), as observed 
in the visual analysis. On the other hand, in Central Jakarta, where interparameter relationships play a more 
significant role, LSTM excelled in predicting the general trends, particularly for temperature (Tavg) and relative 
humidity (RH_avg), as shown in the visual comparison. Direct predictions based on the models showed that 
LSTM outperformed GRU in North Jakarta, providing predictions that were closer to actual values for all four 
parameters. In Central Jakarta, LSTM was more accurate for two parameters (RH_avg and ff_avg), whereas 
GRU performed better for two parameters (Tavg and RR). 

Overall, the results suggest that the choice of model for weather prediction depends on the user's priorities: if 
the goal is to capture accurate relationships between parameters, LSTM is the preferable choice, especially in 
Central Jakarta. However, for scenarios requiring the ability to handle extreme weather fluctuations, particularly 
in rainfall and wind speed, GRU proves more effective, especially in North Jakarta. Therefore, the selection of 
either LSTM or GRU should be made based on the specific needs of weather prediction and the characteristics 
of the region under study. 
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